Радиоактивные и радиогенные изотопы

Для получения исследовательских данных в геохимических исследованиях широко используются изотопные индикаторы.

Изотопные индикаторы – этовещества, имеющие отличный от природного изотопный состав и благодаря этому используемые в качестве метки при изучении самых разнообразных процессов. Роль изотопной метки выполняют стабильные или радиоактивные изотопы химических элементов, которые легко могут быть обнаружены и определены количественно. Высокая чувствительность и специфичность изотопных индикаторов позволяют проследить за ними в сложных процессах перемещения, распределения и превращения веществ в сколь угодно сложных системах, в том числе и в живых организмах.

Метод изотопных индикаторов (называется также методом меченых атомов) был впервые предложен Д. Хевеши и Ф. Панетом в 1913 г. Широкое использование изотопных индикаторов стало возможным благодаря развитию ядерной техники, позволившей получать изотопы в массовом масштабе.

Метод изотопных индикаторов основан на том, что химические свойства разных изотопов одного элемента почти одинаковы (благодаря чему поведение меченых атомов в изучаемых процессах практически не отличается от поведения других атомов того же элемента), и на легкости обнаружения изотопов, особенно радиоактивных. При использовании метода необходим учет возможных реакций изотопного обмена, приводящих к перераспределению меченых атомов (следовательно, к потере соединением метки), а иногда и учет радиационных эффектов, связанных с влиянием радиоактивных излучений на ход процесса. Изотоп, используемый в качестве метки, вводится в состав изучаемых соединений. Могут быть использованы как стабильные, так и радиоактивные изотопы.

Преимущество стабильных изотопов – их устойчивость и отсутствие ядерных излучений. Однако только небольшое число элементов имеет подходящие стабильные изотопы. Малая доступность последних и сравнительно сложная техника обнаружения составляют недостатки метода изотопных индикаторов с применением стабильных изотопов. Преимущество радиоактивных изотопов – возможность их получения практически для всех элементов периодической системы, высокая чувствительность, специфичность и точность определения, простота и доступность измерительной аппаратуры. Поэтому большинство исследований, использующих метод изотопных индикаторов, выполнено с радиоактивными изотопами.

Такие элементы, как водород, углерод, сера, хлор, свинец, имеют удобные для использования как стабильные  (2H, 13C, 34S, 35Cl, 37Cl, 204Рb), так и радиоактивные изотопы (3H, 11C, 14C, 35S, 36C1, 212Рb). В качестве изотопов азота и кислорода чаще всего применяются стабильные 15N и 18O и другие. Стабильные изотопные индикаторы получают обогащением природных изотопных смесей путем многократного повторения операции разделения (перегонка, диффузия, термодиффузия, изотопный обмен, электролиз), а также на масс-спектрометрических установках и при ядерных реакциях.

Для элементов, существующих в природе в виде одного изотопа (Be, F, Na, Al, P, I), в качестве меченых атомов используют только искусственные радиоактивные изотопы; примером часто применяемых радиоактивных изотопов служат 3H, 14C, 32P, 35S, 45Ca, 51Cr, 59Fe, 60Co, 89Sr,95Nb, 110Ag, 131I и др. Выбор радиоактивного изотопа определяется его ядерными характеристиками – периодом полураспада, типом и энергией излучения. Для индикации пригодны радиоактивные изотопы, период полураспада которых не очень мал, что позволяет работать в течение времени, необходимого для эксперимента, но и не очень велик, что дает возможность работать с весьма малыми количествами индикатора.

Основным методом анализа стабильных изотопов является масс-спектрометрия (чувствительность 10-4% изотопа при точности 0,1–1% для проб массой в доли мг). Все большее применение находят спектральные методы и парамагнитный резонанс. Дейтерий, 18O и некоторые другие изотопы определяют по изменению показателя преломления, теплопроводности, плотности как самого элементарного вещества, так и его соединений. Радиоактивные изотопы определяют по их излучению при помощи счетчиков Гейгера или сцинтилляционных счетчиков. Так, с помощью счетчика Гейгера можно уловить излучение 10-11 г углерода 14C, 10-16 г фосфора 32Р и иода 131I, 10-19 г углерода 11C и т. д. Современные жидкостные сцинтилляционные счетчики позволяют с высокой эффективностью и точностью проводить определение изотопов с мягким бета-излучением (3H, 14C, 35S и др.). Введение в практику этого метода изотопного анализа повышает его производительность и позволяет работать с незначительными активностями, приближающимися к активности космического фона. Широкое применение в биологии получил метод авторадиографии. При работе с радиоактивными изотопами необходимо соблюдать правила техники безопасности в соответствии с существующими нормами.

Известны различные способы синтеза меченых соединений. Наряду с обычным химическим синтезом используются реакции изотопного обмена и биологический синтез. В большинстве случаев изотопная метка занимает определенное положение в молекуле; например, пропионовую кислоту можно пометить по углероду тремя способами: 14CH3CH2COOH, СН314СН2СООН, СН3СН214СООН.

Имеются три основных направления использования изотопных индикаторов. Методом изотопных индикаторов изучают характер распределения веществ и пути их перемещения. Изотопные индикаторы вводят в ту или иную систему и через определенные промежутки времени устанавливают наличие изотопных индикаторов в различных частях системы. Наиболее наглядные картины распределения получаются без разрушения образца при помощи радиоавтограмм.

Другое направление использования изотопных индикаторов – количественный анализ. Один из самых простых и распространенных вариантов метода изотопных индикаторов – метод изотопного разбавления, при котором к анализируемому веществу добавляют дозированное количество изотопных индикаторов и по степени его разбавления судят об исходном количестве вещества. Этот метод позволяет производить определение ничтожно малых количеств трудноопределяемых веществ и, наоборот, больших масс веществ, анализировать сложные смеси, анализ и разделение которых другими методами невозможны.

Широкими возможностями отличается примыкающий к методу изотопных индикаторов активационный анализ, где меткой служит изотоп другого элемента, образованный из данного в результате ядерной реакции. Особенно большое значение этот метод имеет при определении микроэлементов в металлах, сплавах, минералах, тканях, при быстром контроле технологических процессов. Количественный анализ природных изотопов, входящих в естественные радиоактивные рядыурана и тория, а также количественное определение изотопа 14C в умерших организмах позволяют определять возраст горных пород и археологических находок.

Третьим направлением использования изотопных индикаторов является выяснение механизма различных процессов и изучение строения химических соединений. Введение изотопной метки в определенное положение молекулы устраняет химическую неразличимость атомов, допуская возможность однозначного выяснения механизма тех или иных реакций, для которых обычные химические методы описывают только начальное и конечное состояния.

Все указанные направления применения изотопных индикаторов широко представлены в различных областях химии, биологии, медицины, техники, сельского хозяйства и т.д.